所有新聞
Logo

通知中心

沒有訊息!

通知中心

沒有訊息!

分類

    • •所有 “科技” 子分類
    • •人工智慧
    • •汽車
    • •小工具
    • •互聯網
    • •新能源
    • •太空
    • •所有 “科學” 子分類
    • •醫學與生物學
    • •歷史與考古學
    • •天文學與天體物理學
    • •物理與化學
    • •太陽
    • •量子物理學
    • •遺傳學
    • •所有 “行星” 子分類
    • •動物
    • •植物
    • •發現
    • •海洋
    • •不尋常現象
    • •天氣與生態
    • •南極洲
    • •所有 “社會” 子分類
    • •記錄
    • •藝術
    • •音樂
    • •八卦
    • •時尚
    • •建築學
    • •電影
    • •披露
    • •食物
    • •所有 “金錢” 子分類
    • •拍賣
    • •稅收
    • •股市
    • •公司
    • •銀行和貨幣
    • •娛樂圈
    • •加密貨幣
    • •所有 “世界事件” 子分類
    • •摘要
    • •突發新聞
    • •國際組織
    • •即將舉行的全球事件
    • •峰會會議
    • •特朗普 美國
    • •所有 “人類” 子分類
    • •意識
    • •喵
    • •心理學
    • •青年
    • •教育
    • •旅行
    • •設計
    • •語言

關注我們

  • •科技
  • •科學
  • •行星
  • •社會
  • •金錢
  • •世界事件
  • •人類

分享

  • •人工智慧
  • •汽車
  • •小工具
  • •互聯網
  • •新能源
  • •太空
  • 關於我們
  • 使用條款
  • 隱私政策
  • 首頁
  • 科技
  • 人工智慧

AI-Powered Tool Predicts Autoimmune Disease Progression

11:18, 09 一月

编辑者: Veronika Radoslavskaya

Researchers at Penn State College of Medicine have developed a groundbreaking tool called the Genetic Progression Score (GPS) to predict the likelihood of individuals with preclinical symptoms progressing to advanced stages of autoimmune diseases. This innovative method utilizes artificial intelligence to analyze genetic and clinical data, significantly enhancing prediction accuracy.

Approximately 8% of Americans suffer from autoimmune diseases, with conditions like rheumatoid arthritis and lupus often causing irreversible damage. Early detection is crucial, as antibodies linked to these diseases can appear years before symptoms manifest. Dajiang Liu, a lead author of the study, emphasized the importance of early intervention: "Once autoimmune diseases progress, the damage can be irreversible."

The GPS model employs transfer learning, allowing predictions using smaller datasets, which is vital for studying diseases with limited affected populations. By integrating data from various sources, the GPS can identify preclinical individuals and estimate their progression likelihood.

Tested against real-world data from Vanderbilt University and validated with the National Institutes of Health's biobank, GPS outperformed 20 other models, showing up to 1,000% greater accuracy in predicting disease progression. The model's success highlights its potential for early intervention and personalized treatment.

While focused on autoimmune diseases, the GPS framework could be adapted for other conditions, promising broader medical applications. Liu noted, "AI and transfer learning can help us study underrepresented populations and reduce health disparities." This advancement could revolutionize the diagnosis and management of autoimmune diseases.

閱讀更多有關此主題的新聞:

27 十一月

AI Advances in Early Heart Disease Detection

19 十一月

New AI Algorithm Predicts Heart Attacks Up to 13 Minutes in Advance

16 十一月

AI Accurately Detects Early Liver Disease Using Health Records

发现错误或不准确的地方吗?

我们会尽快处理您的评论。