所有新闻
Logo

通知中心

没有消息!

通知中心

没有消息!

类别

    • •所有 “技术” 子类别
    • •小工具
    • •人工智能
    • •汽车
    • •太空
    • •互联网
    • •新能源
    • •所有 “科学” 子类别
    • •医学与生物学
    • •历史与考古学
    • •太阳
    • •物理与化学
    • •天文学与天体物理学
    • •量子物理学
    • •遗传学
    • •所有 “行星” 子类别
    • •动物
    • •植物
    • •海洋
    • •发现
    • •天气与生态
    • •不寻常现象
    • •南极洲
    • •所有 “社会” 子类别
    • •音乐
    • •记录
    • •艺术
    • •电影
    • •八卦
    • •披露
    • • 时尚
    • •建筑学
    • •食物
    • •所有 “金钱” 子类别
    • •拍卖
    • •税收
    • •银行和货币
    • •加密货币
    • •娱乐圈
    • •公司
    • •股市
    • •所有 “世界事件” 子类别
    • •国际组织
    • •摘要
    • •突发新闻
    • •即将举行的全球事件
    • •峰会会议
    • •特朗普 美国
    • •所有 “人类” 子类别
    • •喵
    • •意识
    • •教育
    • •青年
    • •旅行
    • •心理学
    • •设计
    • •语言

关注我们

  • •技术
  • •科学
  • •行星
  • •社会
  • •金钱
  • •世界事件
  • •人类

分享

  • •医学与生物学
  • •历史与考古学
  • •太阳
  • •物理与化学
  • •天文学与天体物理学
  • •量子物理学
  • •遗传学
  • 关于我们
  • 使用条款
  • 隐私政策
  • 首页
  • 科学
  • 物理与化学

Machine Learning Speeds Up Search for High-Performance Metal Alloys

09:33, 10 二月

编辑者: Vera Mo

Researchers at Skoltech and MIPT in Russia have developed a machine learning-driven approach to accelerate the search for high-performance metal alloys. This method, reported in npj Computational Materials, allows materials scientists to explore a wider range of alloy compositions, potentially leading to the discovery of new materials with superior properties for various industries.

Traditionally, alloy modeling has been computationally demanding, requiring materials scientists to make educated guesses about promising compositions. This new approach, however, leverages machine-learned potentials, which enable rapid calculations and allow for the exploration of all possible combinations up to a certain limit. This exhaustive search eliminates the risk of missing unexpected materials with exceptional characteristics.

The researchers validated their method on two systems: five high-melting-point metals (vanadium, molybdenum, niobium, tantalum, and tungsten) and five noble metals (gold, platinum, palladium, copper, and silver). Their algorithm identified 268 new alloys stable at zero temperature, many of which were not listed in a widely used industry database. For instance, in the niobium-molybdenum-tungsten system, the machine learning approach yielded 12 alloy candidates, while the database contained no three-component alloys of these elements.

The properties of these newly discovered alloys will be further investigated through simulations and experiments to determine their potential for practical applications. The researchers plan to expand their approach to include alloys with different compositions and crystal structures.

阅读更多关于该主题的新闻:

25 七月

海天牛的光合作用之谜:对共生与进化的新启示

25 七月

乌干达科学家发现鳄梨叶和种子富含抗氧化剂,为新药开发铺平道路

22 七月

阿贡国家实验室开发新型锂提取技术应对电动汽车需求增长

你发现了错误或不准确的地方吗?

我们会尽快考虑您的意见。